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The brain is composed of complex networks of interacting neurons that express
considerable heterogeneity in their physiology and spiking characteristics. How does
this neural heterogeneity influence macroscopic neural dynamics, and how might
it contribute to neural computation? In this work, we use a mean-field model to
investigate computation in heterogeneous neural networks, by studying how the
heterogeneity of cell spiking thresholds affects three key computational functions of a
neural population: the gating, encoding, and decoding of neural signals. Our results
suggest that heterogeneity serves different computational functions in different cell
types. In inhibitory interneurons, varying the degree of spike threshold heterogeneity
allows them to gate the propagation of neural signals in a reciprocally coupled excitatory
population. Whereas homogeneous interneurons impose synchronized dynamics that
narrow the dynamic repertoire of the excitatory neurons, heterogeneous interneurons
act as an inhibitory offset while preserving excitatory neuron function. Spike threshold
heterogeneity also controls the entrainment properties of neural networks to periodic
input, thus affecting the temporal gating of synaptic inputs. Among excitatory neurons,
heterogeneity increases the dimensionality of neural dynamics, improving the network’s
capacity to perform decoding tasks. Conversely, homogeneous networks suffer in their
capacity for function generation, but excel at encoding signals via multistable dynamic
regimes. Drawing from these findings, we propose intra-cell-type heterogeneity as a
mechanism for sculpting the computational properties of local circuits of excitatory
and inhibitory spiking neurons, permitting the same canonical microcircuit to be tuned
for diverse computational tasks.

heterogeneity | recurrent neural networks | neural dynamics | neural computation |
mean-field models

The function of the nervous system is to process sensory information from the
environment and generate adaptive behavioral responses that support survival. These
computations require networks of neurons be able to reliably encode inputs, decode
signals from the dynamics of other neural populations, and gate signals between sub-
populations of neurons (1–3).

The neural populations that mediate these computations show a striking degree of
inter-neuron heterogeneity, with cells varying in their structure, gene expression, and
electrophysiological response properties (4–7). Scientists most often deal with cellular
diversity by grouping neurons into dozens to hundreds of functionally or genetically
defined “cell types,” and many studies have demonstrated that cell type diversity plays a
key role in shaping neural computation (5, 8–11).

But there is clear experimental evidence that cell type boundaries are often fuzzy,
with neurons of the same cell type showing considerable variance in their structure
and response properties (12–15). In some instances, cells of a specific type have been
demonstrated to have properties that vary along a continuum (16, 17). In addition
to heterogeneity of physiological properties, neurons within a population can express
diverse receptors for a particular neuromodulator, causing that neuromodulator to have
heterogeneous effects on local neural activity (18, 19).

How can reliable neural computation be carried out given this variable substrate? It
may be that biological computation is only sensitive to a small subset of physiological
parameters (20), or that multiple distinct combinations of physiological properties give
rise to similar network dynamics (21). However, it may also be that neural computation
not only leverages distinct cell types, but also leverages within-type diversity of a neural
population to shape that population’s dynamics and function.

In support of the hypothesis that within-population heterogeneity is important for
neural computation, recent results suggest that the loss of within-type heterogeneity
might underlie pathological cortical brain dynamics recorded in patients with epilepsy
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(22). This confirms previous results in mice where neural
heterogeneity in the olfactory bulb was found to decrease neural
synchronization and increase information transmission in the
neural population (23). These results suggest that an important
purpose of within-type heterogeneity is to make neural popu-
lations more resilient to pathological synchronization. Indeed,
theoretical studies of heterogeneous neural network dynamics
confirm that within-type heterogeneity can make networks less
prone to synchronization (22, 24–27) (but see ref. 28 that
reports that heterogeneity facilitates transitions to synchrony in
a network model with purely excitatory neurons).

A reduction in pathological synchronization is not the only
role that within-type heterogeneity can play. Computational
studies of recurrent neural network models with within-type
heterogeneity have found that heterogeneity can change the
dimensionality of their intrinsic dynamics (27, 29), that it affects
how neural populations respond to extrinsic inputs (30–32),
and that it can cause phase transitions in the intrinsic network
dynamics (33–35). Some of these findings suggest that the effect
of within-type heterogeneity on population response properties
is specific to neuron type, differing between excitatory and
inhibitory neurons (12, 31, 32). It remains unclear how these
effects on network dynamics relate to the functional role of
heterogeneity in terms of the networks’ capacity to encode,
transform, and gate signals in neural networks.

In this work, we develop a theoretical framework for studying
the role of neural heterogeneity; the approach explicitly relates
heterogeneity-induced changes in neural dynamics to changes
in neural computation, in terms of the capacity of a network to
encode, transform, and gate neural signals. To this end, we derive
mean-field equations for spiking neural networks (SNNs) that
express heterogeneity in their spike thresholds. We systematically
examine the effects of spike threshold heterogeneity on the
network dynamics and computations, using methods from
dynamical systems theory and machine learning. Our results
suggest that spike threshold heterogeneity does not only serve to
desynchronize neural circuit dynamics; it also serves to support
distinct computational functions in inhibitory and excitatory
neurons. Whether more or less heterogeneity is beneficial for
the computational abilities of neural circuits depends on the
computational demands that the circuit faces.

Results
We incorporate heterogeneity in a spiking neural network
model by introducing quenched disorder in model parameters.
Quenched disorder on a model parameter implies that the values
taken by the parameter are sampled from a chosen probability
distribution and randomly assigned to each individual neuron in
the network. Once assigned, the parameter value assigned to each
neuron remains fixed, constant over time.

To study the effects of within-type heterogeneity on a neural
population, we must first identify relevant model parameters
that capture aspects of within-type heterogeneity in biological
neurons. Previous work on SNNs have considered the input
current I as a quenched, distributed variable (26, 35–37). Since
the actual value of input currents is hard to measure experimen-
tally, the underlying distribution of this random variable cannot
be empirically characterized; this difficulty interferes with the
ability to compare the predictions of a neural network model
to the actual dynamics of biological neural networks. Moreover,
the distribution of I values is not an intrinsic property of the
network, as it reflects a property of external input sources.

Electrophysiological properties of individual model neurons,
such as their membrane capacitance, membrane resistance,
resting potential, or spiking threshold, capture variations in the
structural composition of the cell membrane across neurons
of the same type (38) as well as across distinct neural types.
Differences in the electrophysiological properties of neurons
result in differences in their spiking responses to a given synaptic
input. We thus identify heterogeneity in the electrophysiological
properties of model neurons as an appropriate scenario for
studying the effect of genetic or anatomical sources of within-
type heterogeneity in biological networks.

Specifically, we consider the spike threshold of individual
neurons as a quenched, distributed parameter. Spike thresholds
are known to capture properties of the ion channel distribution
in the cell membrane that determine the sensitivity of the cell to
synaptic inputs (39). Thus, the heterogeneity of spike thresholds
has often been linked to the typical sigmoidal response curve of
neural populations (22, 40, 41). Importantly, spike thresholds
can be directly determined from single cell recordings; their
inclusion in our model thus allows for a direct comparison of
the effects of within-type heterogeneity between neural network
models and biological networks.

To determine biologically reasonable ranges of spike threshold
heterogeneity, we referenced the NeuroElectro database (42).
Reported spike thresholds vary between−65 and−10 mV, with
standard deviations of spike thresholds of a single cell type varying
from ≈ 1 mV (43) to more than 10 mV (44). These data reveal
substantial differences in spike threshold heterogeneity across cell
types and brain regions. For example, cerebellar Purkinje cells
have been reported to express much more homogeneous spike
thresholds than CA1 pyramidal cells (45), whereas recordings
from cortical Martinotti interneurons in rodents have revealed
SDs of spike thresholds that varied between 2 and 8 mV across
cortical layers (46).

Below, we study how spike threshold variations within this
range affect the dynamics and function of neural populations.

Mean-Field Equations for Networks of Heterogeneous Spiking
Neurons. To study the effect of within-type heterogeneity on
populations of one or more functional cell types, we model
each population of a specific cell type as a network of coupled
Izhikevich (IK) neurons (4) with parameters tuned to replicate
the spiking behavior of the specific cell type. The network model
takes the form

Cv̇i = k(vi − vr)(vi − v�,i)− u + I(t) + gs(E − vi), [1]

�uu̇ = −u + b(−vr +
1
N

N∑
j=1

vj) + �u�r, [2]

�s ṡ = −s + J�sr, [3]

r(t) =
1
N

N∑
j=1

∑
k\tkj ≤t

�(t − tkj ). [4]

Here, vi represents the membrane potential of the ith neuron
in the network; s reflects the post-synaptic activation of neurons
in the network, subject to the low-pass filtering effects of synaptic
integration; u is a global recovery variable; and r(t) is the firing
activity, averaged across all neurons in the network. We provide
additional details on these equations and their parameters in
Materials and Methods, Section A.

To introduce within-population spike threshold heterogene-
ity, we assume that the spike thresholds {v�,i} are distributed

2 of 12 https://doi.org/10.1073/pnas.2311885121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 7
2.

19
7.

14
7.

11
 o

n 
D

ec
em

be
r 

5,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

72
.1

97
.1

47
.1

1.



according to a Lorentzian probability distribution parameterized
by a center at v̄� and half-width-at-half-maximum Δv, as
described by the density function

p(v�) =
1
�

Δv

[v� − v̄�]2 + Δ2
v
. [5]

An increase of Δv yields a higher variance of spike thresholds
across neurons is in the network; the width Δv of the Lorentzian
probability density thus determines the extent of within-type
heterogeneity. Under the Lorentzian assumption, the following
set of mean-field equations can be derived analytically:

Cṙ =
Δvk2�v
�C

(v − vr) + r[k(2v − vr − v̄�)− gs], [6]

Cv̇ =kv(v − vr − v̄�)− �Cr(Δv�v +
�C
k

r) [7]

+ kvr v̄� − u + I + gs(E − v),
�uu̇ =b(v − vr)− u + �u�r, [8]
�s ṡ =− s + �sJr, [9]

where �v ≡ sign(v − vr). A more detailed derivation of these
mean-field equations can be found in SI Appendix.

The four differential equations Eqs. 6–9 capture the macro-
scopic dynamics of the Izhikevich neuron network of Eqs. 1–3.
We can examine how within-type heterogeneity affects the
dynamics of SNNs by systematically studying the effects of Δv
on the dynamics of the mean-field equations.

An examination of Eqs. 6–7 indicates that Δv shapes the
dynamics of both r and v; this effect is multiplicative and
hence depends on the value of these two state variables. The
effect of threshold heterogeneity in our model thus depends on
the dynamic regime of the population. When the population
membrane potential v is close to its resting value vr , Δv barely
affects the population firing activity, since v−vr in Eq. 6 vanishes
and r in Eq. 7 is small. However, when the population is in a
depolarized or hyperpolarized state, the effect of Δv is harder
to predict, since it affects Eqs. 6 and 7 in different ways. The
effects of neural heterogeneity in our mean-field model thus differ
qualitatively from those found in previous work (36, 47, 48),
where neural heterogeneity was implemented as variance over
I and only led to a shift in the average firing activity of the
population.

Neural Heterogeneity in Populations of Neurons Composed of
a Single Cell Type. To improve our understanding of within-
type heterogeneity on the dynamics of neural populations, we
studied the effects of changes in the range of spike threshold
heterogeneity quantified by Δv on the mean-field dynamics
of SNNs. To validate our mean-field model, we contrast our
findings with numerical bifurcation analysis of simulations of
SNNs, details of which are provided in Materials and Methods,
Section B. Specifically, we compare our mean-field predictions to
simulations of SNNs with either Lorentzian or Gaussian spike-
threshold distributions and with sparse synaptic connectivity
(coupling probability of 20%), to determine the extent to
which the mean-field assumptions of all-to-all connectivity and
Lorentzian-distributed spike thresholds matter for prediction of
network dynamics. We will first examine predictions of our
mean-field model and then discuss the model’s alignment with
simulation results from SNNs.

First, we examined the effects of spike threshold heterogeneity
on the dynamics of a single population of excitatory, regular-
spiking neurons. Such a population can either be in a monostable

asynchronous regime, a bistable asynchronous regime, or a regime
of synchronous oscillations (Fig. 1 A and B).

In the monostable asynchronous regime, only a single stable
state exists, and the dynamical regime of the network always
converges to it after a sufficiently long time (mathematically, as
t → ∞). The bistable asynchronous regime is characterized by
the co-existence of two stable states: a stable node that represents
a quiescent state and a stable focus that represents a persistent
spiking state. The initial state of the network determines whether
it converges to the quiescent or the persistent spiking state, and
inputs to the system can shift the network state from one stable
point to the other. The domains of attraction of these two
states depend on the location of an unstable saddle point that
separates the stable node from the stable focus (see also Fig. 2C
where we show a transition of the network between those two
states). Finally, the synchronous oscillation regime arises from
the interaction of fast, recurrent excitation with spike frequency
adaptation (48).

The parameter � in Eq. 2 controls the level of spike frequency
adaptation, and thus the propensity of the system to enter the
synchronous oscillation regime. To cover the space of possible
network regimes, we therefore examined the network dynamics
for two different levels of �rs: one that allows for oscillations to
exist (�rs = 100 pA) and one that does not (�rs = 10 pA).

We find that changing the spike threshold heterogeneity
Δrs of the excitatory neurons affects the transition between
these regimes, a transition that can be induced by changes in
the extrinsic input Irs (Fig. 1 A and B). The width of the
bistable asynchronous regime (given by the horizontal distance

A B

C D

Fig. 1. Heterogeneity linearizes neural population dynamics. (A–D) Two-
dimensional (2D) bifurcation diagrams are depicted for different cell types.
Regions colored in gray and green depict bistable and oscillatory regimes,
respectively. The black and orange crosses depict approximate bifurcation
points, estimated from the dynamics of simulated SNNs with a Lorentzian
and a Gaussian distribution of the spiking thresholds, respectively. Spiking
neural network dynamics were obtained from simulating networks of N =
1,000 neurons connected by sparse, random couplings (coupling probability
of 20%) The y-axis on the Left (Right) depicts the width of the Lorentzian
(Gaussian) distribution used to generate the SNNs that result on the bifurca-
tion points shown by the black (orange) crosses. (A) Excitatory regular-spiking
neurons with low spike-frequency adaptation (�rs = 10 pA). (B) Excitatory
regular-spiking neurons with high spike-frequency adaptation (�rs = 100
pA). (C) Inhibitory fast-spiking neurons. (D) Inhibitory low-threshold-spiking
neurons.
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A B C

D
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H

K

L

J

FE

I

Fig. 2. Homogeneous inhibitory interneurons overwrite the bifurcation structure of excitatory neurons. 2D bifurcation diagrams: Regions colored in gray and
green depict bistable and oscillatory regimes, respectively. The black and red stars indicate the value of the input current used during low input (white, t < 750
ms and t > 2,000 ms) and high input (gray-blue, 750 ms < t < 2,000 ms) regimes, respectively. The effect of low and high inputs in the firing dynamics is shown
in the third column. (A and B) 2D bifurcation diagrams for a single population of regular-spiking neurons (RS) with weak (�rs = 10 pA) and strong (�rs = 100
pA) spike frequency adaptation, respectively. (C and D) Firing dynamics of the RS population with weak (C) vs strong (D) spike frequency adaptation. Spiking
dynamics were obtained from a network with N = 2,000 neurons with sparse, random coupling (coupling probability of 20%). (E and F) 2D bifurcation diagrams
for a two-population network of regular-spiking and fast-spiking (FS) neurons with high FS neuron heterogeneity. The bifurcation diagrams resemble those of
the one-population model (compare to A and B). Note that the direction of the x-axis is flipped in comparison to A and B, to account for the fact that increases
in Irs excite the RS population, whereas increases in Ifs cause inhibition of the RS population due to the inhibitory nature of the FS-to-RS projection. The input
to the RS population was fixed at Irs = 60 pA. (G and H) RS firing dynamics in the two-population model with high FS neuron heterogeneity, which closely
resembles that of the single population model (compare to C and D). Spiking dynamics were obtained from simulations of a network of N = 2,000 RS neurons
and N = 2,000 FS neurons with sparse, random coupling (coupling probability of 20%). (I and J) Same as E and F but for low FS neuron heterogeneity. (K and L)
Same as G and H but for low FS neuron heterogeneity.

between the fold bifurcation curves in Fig. 2A) decreases as
the spike threshold heterogeneity increases, until the bistable
regime vanishes in a cusp bifurcation. Similarly, the width of the
synchronous regime (given by the horizontal distance between
the Hopf bifurcation curves in Fig. 2B) decreases as the spike
threshold heterogeneity increases, until the synchronous regime
vanishes in a supercritical Hopf bifurcation.

Next, we studied the effects of spike threshold heterogeneity
on populations of inhibitory neurons, which are thought to
play a central role in maintaining a balanced and yet responsive
dynamical regime in the cortex (49). To account for the different
time scales of inhibition reported for cortical interneurons (50),
we analyzed fast spiking as well as low-threshold-spiking neurons,
two interneuron types with distinct membrane time constants
(39). Both types of interneurons can either be in an asynchronous
or a synchronized, oscillatory regime; the transitions between
these states occur via an Andronov–Hopf bifurcation (Fig. 1
C and D). As spike threshold heterogeneity is increased, the
oscillatory regime becomes narrower until it eventually vanishes.

The disappearance of bistable and synchronized oscillatory
states indicates that spike threshold heterogeneity linearizes the
dynamics of neural populations composed of a single cell type,
independent of whether that cell type is excitatory or inhibitory.

We find that the results that follow from the analysis of the
mean-field equations agree with the dynamics of simulated SNNs
with similar parameters (Fig. 1 A–D). To perform SNN simu-
lations with either Lorentzian or Gaussian distributions of spike
thresholds, we estimated the location of fold and Andronov–
Hopf bifurcations in the SNN dynamics by considering the
response of the networks to a slowly ramping input (see the
Materials and Methods, Section B for details). We used both
Gaussian and Lorentzian heterogeneity distributions to test
whether our results depend on the particularly long tails of the
Lorentzian distribution. Fig. 1 shows the bifurcation structure of
SNNs with either spike threshold distribution. We find that the
bifurcation structure of the SNNs is qualitatively well captured by
the bifurcation diagrams obtained from the mean-field equations
(also see SI Appendix, Figs. S2–S4 for spiking dynamics and firing
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rate distributions of SNNs with Gaussian and Lorentzian spike
threshold distributions).

These results illustrate the robustness of the mean-field
approximation, as the SNN simulations were carried out in
networks with sparse random connectivity as opposed to the all-
to-all connectivity assumed in the derivation of the mean-field
equations (see the Materials and Methods, Section A for details).

Neural Heterogeneity in Excitatory-Inhibitory Networks. In
much of the brain, inhibitory neurons are local interneurons that
act on neighboring excitatory neurons to modify their dynamics
(5, 8). We asked how spike threshold heterogeneity in local
inhibitory interneurons might alter the responses of recurrently
coupled excitatory projection neurons. To address this question,
we extend our model Eqs. 1–3 to a two-population model of
coupled excitatory regular-spiking and inhibitory fast-spiking
neurons (see the Materials and Methods, Section A for details).
We analyzed how the fast-spiking interneurons modulate the
bifurcation structure of the regular-spiking neuron population
and how this modulation depends on the degree of heterogeneity
of the fast-spiking population. We applied bifurcation analysis to
the two-population model for different levels ofΔfs and compared
the resulting bifurcation diagrams to the bifurcation structure
of the isolated regular-spiking excitatory population. To again
account for the full range of dynamics expressed by the regular-
spiking population, we repeated this procedure for low and high
spike-frequency adaptation (see Fig. 1 A and B for �rs = 10 pA
and �rs = 100 pA, respectively).

When the spike threshold heterogeneity of the inhibitory
population is low, the bistable asynchronous regime observed in
the one-population model of purely excitatory neurons ceases
to exist, and synchronous oscillations become the dominant
dynamic regime (Fig. 2 I and J). However, when the spike
threshold heterogeneity of the inhibitory population is increased,
the behavior of the two-population model begins to revert to
that of the one-population model (Fig. 2 E and F). Specifically,
the input Ifs to inhibitory interneurons induces the same phase
transitions in excitatory activity that we found in the excitatory-
only model. Changes in the spike threshold heterogeneity of the
excitatory population produce qualitatively similar changes in
their dynamic regime (compare Fig. 2 E and F to Fig. 2 A and
B).

We confirmed the predictions obtained from the mean-
field equations via simulations of SNNs with sparse, random
coupling (coupling probability of 20%). We chose to simulate
networks with sparse coupling rather than all-to-all coupling to
demonstrate that our mean-field results generalize to biologically
more plausible network architectures (see the Materials and
Methods, Section A for details). The average firing rate dynamics
obtained from these SNNs closely match the firing rate dynamics
predicted by the mean-field equations (Fig. 2).

To determine whether the observed effect of inhibitory hetero-
geneity is specific to fast-spiking interneurons, we added to the
model an inhibitory interneuron population with substantially
different electrophysiological properties: low-threshold-spiking
interneurons (5, 39). As above, we found that homogeneous low-
threshold-spiking interneurons drove synchronized oscillations
that masked the bifurcation structure of the excitatory population
and that increasing the spike threshold heterogeneity of these
interneurons recovered that structure (Fig. 2 and SI Appendix,
Fig. S5).

Note that the widths of the spike threshold distributions
chosen for each of the three subpopulations match spike threshold

variances reported in the literature; this choice emphasizes
the relevance of our findings to understanding the dynamic
organization of biological neural networks. Specifically, the values
ofΔfs andΔlts used for SI Appendix, Fig. S5 were fitted to resemble
sample variances reported for recordings from cortical fast-
spiking and low-threshold-spiking neurons in rodents (43, 46);
the fitting method is described in SI Appendix (see SI Appendix,
Fig. S1 for the obtained fits).

We conclude that heterogeneous inhibitory interneurons
preserve the bifurcation structure of the excitatory population,
whereas homogeneous inhibitory interneurons overwrite this
bifurcation structure and move the system toward highly syn-
chronized dynamics. Within-type heterogeneity of inhibitory
interneurons is therefore an important control variable for their
role in computation by neural circuits. Previous attractor-based
theories of brain function have posed inhibitory synchronization
as a means of gating signal propagation in mesoscopic brain
circuits (11). Here, we extend this theory of inhibitory neurons’
role in neural computation to show how inhibitory gating
could be tuned by increasing or decreasing the spike threshold
heterogeneity of the inhibitory population. Such tuning of spike
threshold heterogeneity could be achieved either developmentally
or by heterogeneous action of neuromodulatory input (18, 19).

Attractor-based theories of neural computation also suggest
that excitatory projection neurons are the central elements that
implement signal encoding and transformation functions in
extended brain networks. Does within-type heterogeneity play
a similarly important role for encoding and transformation
functions as it appears to play for gating functions? In the
next sections, we address this question by examining the
influence of spike threshold heterogeneity on the signal encoding
and transformation capacities of recurrently coupled excitatory
neurons.

Neural Heterogeneity Affects Encoding Capacities of Multi-
stable Networks. Our mean-field analysis shows that within-
type heterogeneity decreases the extent of the bistable regime
of excitatory populations and linearizes their responses, even
in networks of multiple cell types. We hypothesized that this
mechanism could have important repercussions for models of
neural computation that rely on the nonlinearity of population
dynamics. For example, network-level multistability is a crucial
component of many theoretical models of information encoding
via persistent neural activity (11, 51, 52). Can networks of
excitatory neurons still function as multistable information
encoding circuits in the face of heterogeneity?

To address this question, we again focused on the characteri-
zation of population activity in spiking neural network models.
First, we studied the effect of within-type heterogeneity on a
network’s capacity to encode an input signal within a region
of spatially localized persistent activity (referred to here as an
“activity bump”). To impose a notion of proximity and spatial
localization in the network model, we considered a ring network
of sparsely coupled regular-spiking neurons (Fig. 3A) whose
parameters were chosen to initialize the network in its bistable
regime. In this network, stimulating one section of the ring
induces elevated neural firing that persists after stimulation offset.
The location of persistent firing within the ring can be used to
encode a working memory trace of the stimulation provided it
maintains stimulus specificity.

To evaluate the heterogeneous ring network’s capacity to
encode its input history, we applied extrinsic stimulation to a
section of the ring and studied the network’s capacity to
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Fig. 3. Spike threshold heterogeneity impairs the retention of spatially
localized activity in a ring network. (A) 2D bifurcation diagram of the regular-
spiking neuron population (same as in Fig. 2A). Vertical lines indicate the
input drive to the network at baseline (gray, Irs = 30 pA) and during extrinsic
stimulation (blue, Irs = 60 pA ). The inset shows the structure of the ring
network; the stimulated section of the ring is shown in blue. (B and C) Spiking
activity as a function of time for an homogeneous and an heterogeneous
network, respectively; the simulated networks consist of N = 2,000 neurons
with sparse coupling (20%). The blue-shaded regions show the application of
a rectangular pulse of extrinsic stimulation to a ring segment whose width is
pin = 0.25 of the length of the ring. The orange-shaded region depicts the
asymptotic time interval used to compute the average neural activity shown
in (D–G). (D and E) Persistent activity of each neuron along the ring during
the orange-shaded test interval depicted in (B and C). Results are shown
as a function of the width pin of the input stimulation. The neural activity
is normalized to the maximum observed spike rate and averaged over 10
random initializations of the network. The blue vertical lines in each row
delimit the section of the network that received extrinsic input. (F) Root mean
squared error between the activity of the network during the application of
the extrinsic input and the activity of the network during the test interval, as
a function of both input width pin and degree of population heterogeneity
Δrs . (G) Normalized spiking activity during the test interval, averaged over the
neurons that did not receive extrinsic stimulation.

retain the location and width of the stimulated section (see
the corresponding Materials and Methods, Section C for more
details). We repeated this analysis while systematically varying
the width of the stimulated section as well as the level of spike
threshold heterogeneity within the population. As expected, a
homogeneous network (Δrs = 0.2 mV) can stably encode
stimulus identity via a stimulus-specific bump of persistent
activity for a wide range of stimulus widths (Fig. 3 B and D).
In contrast, a more heterogeneous network (Δrs = 1.5 mV) is
capable of persistent firing after stimulation but fails to maintain
information about the stimulus location for all but a small range
of narrow stimulus widths (Fig. 3 C and E). The persistent state
is increasingly prone to diffusing through the network as spike
threshold heterogeneity is increased (Fig. 3 F and G).

These results demonstrate a relationship between the bifurca-
tion structure of a network and its capacity to maintain spatially
localized activity required for stimulus encoding. At the mean-
field level, increased spike threshold heterogeneity in the network
reduces the width of its bistable regime (Fig. 3A). Because of this
reduced bistability range, small changes in extrinsic input can

push the system over a fold bifurcation, moving it from a low to
a high activity regime or vice versa. In addition, heterogeneous
networks operating within a narrow bistable regime are more
vulnerable to input noise, since noisy inputs are more likely
to induce phase transitions that move the network out of its
bistable regime. We conclude that heterogeneity results in a
loss of spatially localized dynamics and reduced spatial encoding
capacities in the ring network. In brain structures that require
spatial localization of neural activity for stimulus encoding, we
would therefore predict a tendency toward reduced neural hetero-
geneity, or the introduction of compensating mechanisms such
as sparse, structured connectivity to maintain stimulus identity.

Neural Heterogeneity Increases the Computational Capac-
ity of Neural Populations. The previous section suggests that
heterogeneity interferes with encoding functions that rely on
population-level multistability. The transformation of informa-
tion is a second core function that neural networks may support
via their collective dynamics (53). The coordinated activity of
recurrently coupled neurons can enable neural populations to
extract important features of their input and produce temporally
extended outputs that are transformations of those features. In
this section, we study how within-type heterogeneity affects the
signal transformation capacity of an excitatory neural network by
analyzing its ability to reliably compute input–output transfor-
mations via its dynamics (Fig. 4A).

We initialized a ring network of sparsely coupled regular-
spiking neurons in three distinct dynamic regimes: i) an asyn-
chronous, quiescent regime, ii) a synchronous, oscillatory regime,
and iii) an asynchronous, persistently active regime (Fig. 4B).
We then applied a short pulse of extrinsic stimulation to a small
section of the ring in each of these three different states of the
intrinsic population dynamics and recorded the network response
to the stimulation. We tested the capacity of the network to
generate an arbitrary time-dependent target output in the firing
rate of an output unit. The output unit used learned weights
to read the activity of the neurons within the network, while
synaptic weights between network neurons were kept fixed. This
approach is based on the concept of reservoir computing (54–56);
a detailed description of the reservoir computing framework is
provided in the corresponding subsection within Materials and
Methods, Section D.

The capacity of the network to reliably generate a desired
time-dependent output increased with neural heterogeneity in
all three dynamical regimes (Fig. 4C). We argue that the superior
ability of heterogeneous networks for function generation could
be explained by two factors.

First, networks with higher spike threshold heterogeneity
exhibited higher-dimensional evoked dynamics in all three
dynamical regimes (Fig. 4D). This monotonic relationship
between neural heterogeneity and the dimensionality of network
dynamics is related to the fact that extrinsic stimulation leads
to stronger synchronization between neurons in homogeneous
networks (SI Appendix, Figs. S7–S9). Strong synchronization
creates periods during which a large fraction of the neurons in the
recurrent network are in a refractory state and cannot contribute
to function generation.

Second, networks with higher heterogeneity showed less trial-
to-trial variability in their input-evoked dynamics. To quantify
this effect, we calculated a kernel matrix that captures the function
generation capabilities of a linear readout of the network,
and quantified its variance q across trials (see SI Appendix for
details). Since the dynamics of the networks simulated here are
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A

B C

ED

Fig. 4. Spike threshold heterogeneity affects the function generation prop-
erties of spiking neural networks. (A) Reservoir computing architecture used
for function generation. A pulse is fed into a recurrent neural network and
a linear readout is trained to minimize the mean squared error between a
target time-dependent function and a network output obtained as a linear
combination of the stimulus-evoked neural dynamics within the network. (B)
2D bifurcation diagram of the regular-spiking neuron population (same as in
Fig. 2B). The vertical dashed lines mark the three different dynamical regimes
for which the results in (C–E) are depicted: Irs = 45 pA, Irs = 55 pA, and
Irs = 70 pA. The height of these lines indicates the range of values of Δrs for
which the results in (C–E) were obtained. (C) Mean squared error between the
network readout signal and the target signal, averaged over time and across
all trials of the test dataset. (D) Dimensionality d of the network dynamics,
calculated from spike train correlations between neurons in the network.
(E) Normalized variance of the network response kernel averaged over trials
indicates the reliability of the function generation capacities of the network.
See the Materials and Methods, Section D for a detailed explanation of how
the quantities depicted in (C–E) were calculated. Vertical lines shown in (C–E)
depict the SD across trials.

deterministic, different trials can only lead to different outcomes
because of differences in the initial state of the network. The
kernel variance q reflects how strongly the function generation
capabilities of a network depend on its intrinsic initial state.
As shown in Fig. 4E, heterogeneous networks expressed less
kernel variance than homogeneous networks. This suggests that
heterogeneous networks are more robust to fluctuations in their
intrinsic dynamics and are thus more reliable function generators
than homogeneous networks.

Fig. 4C shows that networks in a synchronized regime have
typically worse function generation capabilities than networks in
asynchronous regimes. This result is to be expected: Theories of
brain oscillations posit that the ability of an extrinsic input to
generate a network response depends on whether the network is
in an active (up) or inactive (down) state within an oscillation
cycle when the input arrives (57, 58). In other words, stimulus-
evoked dynamics depend on the intrinsic state of synchronized
network at the time of stimulation. Since networks were trained
to find input–output transformations that are independent of
the intrinsic state, synchronous networks have to find an input–
output mapping that is independent of the oscillatory phase
at which the input arrived. This explains why synchronous
networks show decreased performance in this task compared

to asynchronous networks. Interestingly, this effect is relatively
small compared to the effect of heterogeneity on function
generation performance. We note that a heterogeneous network
in a synchronous regime can achieve a function generation
performance comparable to that of a more homogeneous network
in an asynchronous active regime.

To gain further insight into this result, we examined the effect
of neural heterogeneity on the ease of entrainment for a network
of regular-spiking neurons. Specifically, we studied the mean-
field Eqs. 6–9 under periodic forcing, and quantified the phase
coherence between the periodic forcing signal and the fluctua-
tions in the average firing activity of the network. We found that
heterogeneous networks could be entrained to oscillate over a
larger range of forcing frequencies! than homogeneous networks
(Fig. 5A); the effect holds for various strengths � of the periodic
forcing signal (Fig. 5 B and C). This increased sensitivity to
periodic forcing explains why heterogeneous oscillating networks
are capable of reliable function generation: Their comparative
ease of entrainment implies that a large number of neurons will
be able to respond to the input signal.

Discussion
Structural heterogeneity has a profound impact on the emergent
dynamics of complex dynamical systems (59–62), as has been
demonstrated in scenarios as diverse as coupling in chemical
oscillators (63), climate policy (64), cellular disease spreading
(65), and the achievement of herd immunity (66).

Here, we have shown that within-type heterogeneity in
networks of coupled spiking neurons has a similarly strong impact
on neural population dynamics, with important consequences for
the types of computations those networks can carry out. While

A

B C

Fig. 5. Spike threshold heterogeneity affects the entrainment properties of
a network of spiking neurons. (A) Coherence between a sinusoidal driving
signal of strength � = 4 pA and the fluctuations in the average firing activity
r of the network as a function of the driving frequency ! and the neural
heterogeneity Δrs . (B) Coherence between a sinusoidal driving signal and
the fluctuations of the average firing activity r for an homogeneous network
(Δrs = 0.1 mV) as a function of the driving frequency ! and driving strength
�. (C) Same as B but for a heterogeneous network (Δrs = 1.0 mV).
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previous work has emphasized that within-type heterogeneity is
an important mechanism for desynchronizing neural dynamics in
the brain (22, 23, 67), we found that within-type heterogeneity
is an important property, one that controls the functions of
neural networks to gate, encode, and transform signals. Our
findings inform two hypotheses about the role that within-
type heterogeneity plays in shaping the computational strategies
employed by the brain, presented below. Both hypotheses assume
that it is mostly the excitatory neurons that encode and transform
behaviorally relevant information in the brain, whereas inhibitory
neurons gate the information flow across networks of excitatory
neurons (11).

Hypothesis I: The Heterogeneity of Inhibitory Interneurons
Serves to Adjust Their Mechanism for Gating Excitatory Neural
Signals. The gating of excitatory signal flow has been suggested
as one of the main functions of inhibitory neurons (68–70).
Based on our results, we hypothesize that the heterogeneity of
inhibitory neurons shapes this gating function. This hypothesis
is based on our finding that the level of heterogeneity of the
inhibitory interneuron population determines whether it acts as
a phase resetting mechanism or as mere shift in the global input
to excitatory neurons.

Heterogeneous inhibitory interneurons effectively act as a
global input that regulates the level of activation of local excitatory
populations. In this role, they induce the same phase transitions
that can be caused by extrinsic inputs to the excitatory population.
Extrinsic inputs that activate heterogeneous inhibitory popula-
tions can cause transitions between up-states and down-states
in the excitatory population and thus contribute, for instance,
to short-term memory functions of the network (51, 71).
Alternatively, extrinsic inputs to the inhibitory population could
move the excitatory population in and out of an oscillatory regime
and thus cause changes in the communication pathways within
the brain (57, 58, 72).

In contrast, homogeneous inhibitory interneurons play a
phase resetting role, since activating these neurons leads to a
synchronized response that resets the entire network state. This
could serve as a mechanism to control the initial response of
the excitatory population to an extrinsic input, or to flush
the network memory (73–75). At high levels of interneuron
homogeneity, neural networks become prone to periodic spike
synchronization, leading to high-frequency oscillations. In the
cortex, the generation of these high-frequency oscillations has
been linked to the processing and transmission of sensory
information (76). Excitatory-inhibitory local circuits, such as
the networks of regular-spiking and fast-spiking neurons studied
here, are suggested to synchronize at these high frequencies to
transmit information across distributed brain networks (77). The
oscillatory properties of such circuits have recently been shown
to depend on levels of neural heterogeneity (78), thus confirming
our results on the critical role that inhibitory interneuron
heterogeneity plays in spike synchronization. At larger scale,
homogeneous interneurons have also been related to neurological
disorders, as it has been suggested that a minimum degree of
heterogeneity in inhibitory neural populations is required to
prevent pathologically synchronized brain states (22, 67).

Hypothesis II: The Heterogeneity of Excitatory Neurons Serves
to Optimize Their Capacities to Encode and Transform Signals.
This hypothesis is an extension of recent studies that found that
the performance of neural networks on various classification and
function approximation tasks could be improved by allowing for

heterogeneous neuron parameters (79–81). Our work extends
these findings by demonstrating that whether more homogeneous
or more heterogeneous networks are computationally beneficial
differs between encoding and signal transformation tasks.

First, we consider neural networks in asynchronous, multi-
stable regimes that are dynamically well equipped for memory
tasks (82, 83). We found that homogeneous networks express
larger multistable regimes than heterogeneous networks (Figs.
2A and 3A). Furthermore, the homogeneous networks were less
susceptible to the diffusion of localized activity and thus more
capable of maintaining different stable states in different parts of
the network. Our findings complement previous work that found
that heterogeneity in the strength of synaptic coupling in ring
networks leads to similar increases in the diffusion of activity (84).

Together, these results suggest that homogeneous networks
have a greater memory capacity than heterogeneous networks.
This property has direct implications for biological networks
where information about location and body position is encoded
by spatially confined bumps of neural activity (11, 85, 86).
Our hypothesis implies that reliable encoding of information
via a spatial activity “bump” necessitates that the excitatory
neurons in the network are relatively homogeneous. This
network configuration may be achieved by a combination of
intrinsic neural homogeneity and homeostatic mechanisms such
as short-term synaptic plasticity that can compensate for intrinsic
heterogeneities (87, 88).

Second, neural networks in an oscillatory regime have been
proposed to play a crucial role in long-range information
transmission and integration in the brain (57, 58, 72). It has
been argued that oscillating networks can gate information flow
because they only respond well to extrinsic input in the up-phase
of their intrinsic oscillation cycle while they are barely responsive
during their down-phase (57). Our results suggest that this is true
only for homogeneous networks and that neural heterogeneity
makes the network response more robust to phase differences
between intrinsic oscillation and extrinsic input. When in their
oscillatory regime, heterogeneous networks do not require phase
synchronization with their input sources to reliably respond to
them. Hence, neural heterogeneity is a property that allows stable
communication and computation in neural oscillators, despite
unstable phase relationships.

Moreover, heterogeneous networks generally express a better
function generation capacity than homogeneous networks. These
findings are directly related to the high dimensionality of the
intrinsic dynamics of heterogeneous networks, which reflects the
fact that heterogeneous networks, whether oscillating or not,
include fewer neurons with high spike train correlations than
homogeneous networks.

These modeling results provide insight into previous exper-
imental findings. In electric fish, it has been reported that
neural heterogeneity is associated with an improved ability to
discriminate between different courtship signals (12). Recordings
from olfactory bulb cells in mice have provided evidence that
neural heterogeneity might contribute to the diversity of receptive
fields inside a neural population (13, 89). Our hypothesis implies
that these findings are manifestations of excitatory networks
operating in a regime where heterogeneity provides a richer
repertoire of collective dynamics that allow for more reliable
transformations of the inputs to the network than the neural
dynamics of its homogeneous counterparts.

Generalization of Our Results to Other Scenarios. In this work,
we have studied networks of coupled spiking neurons with
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heterogeneous spike thresholds sampled from a Lorentzian dis-
tribution. We chose to consider heterogeneity in spike thresholds
because they are a measurable property that reflects electrophys-
iological aspects of a cell that determine how input currents
are translated into firing rates. Spike threshold heterogeneity
is thus a viable means to induce firing rate heterogeneity. We
chose a Lorentzian distribution to characterize the variability
of spike thresholds because the mathematical properties of
this distribution allowed to derive the mean-field Eqs. 6–9
analytically. These mean-field equations were pivotal in obtaining
the results presented here, since they allowed us to relate the
degree of spike threshold heterogeneity to the function of a neural
network by studying changes in the mean-field dynamics of the
network. We now discuss how well our results generalize to i)
parameters other than the spike threshold and ii) non-Lorentzian
probability distributions.

Regarding (i), we would like to emphasize that the Izhikevich
neuron model behaves similar to a quadratic integrate-and-fire
neuron with spike-frequency adaptation (48). A change of vari-
ables relates quadratic integrate-and-fire neurons to non-linear
phase oscillators (36). From the perspective of a non-linear phase
oscillator, a distribution over any Izhikevich neuron parameter
translates into a distribution of the intrinsic frequency of the
oscillator. Thus, we expect the introduction of heterogeneities
in different Izhikevich neuron parameters to have qualitatively
similar effects on the network dynamics and function.

Regarding (ii), heavy tails that characterize the Lorentzian
distribution raise the question whether our results are in
part driven by large numbers of extreme spike thresholds.
We addressed this concern by using a truncated Lorentzian
distribution for all our simulations of spiking neural network; this
strongly limited the number of extreme spike thresholds in the
network. For a detailed analysis of how this truncation affects the
accuracy of the mean-field equations in describing the dynamics
of the simulated networks of spiking neurons, see ref. 90. In
addition, we performed a detailed comparison of the spiking
network dynamics obtained from simulated networks using
Lorentzian vs. Gaussian distributions of spike thresholds (Fig. 1).
We found that these networks produce comparable dynamic
regimes, a result that adds to previous studies analyzing the
potentially different effects of Gaussian vs. Lorentzian parameter
distributions on the collective dynamics of neural networks
(36, 91, 92). Despite reporting quantitative differences between
the dynamics of neural networks with Gaussian vs. Lorentzian
heterogeneity distributions, these studies failed to find qualitative
differences, such as a dynamic regime that can be found for
one type of distribution but not for the other. However, it is
still unclear whether this robustness would still hold for spike
threshold distributions that are non-symmetric or multi-modal.
We thus call on future studies to generalize the results presented
in this work to other types of distributions for characterizing the
heterogeneity of neural properties.

Conclusion. In conclusion, we have proposed and provided
evidence for considering neural heterogeneity as a crucial mecha-
nism for shaping neural computation. Within-type heterogeneity
controls the gating functions of inhibitory interneurons as well
as the capacities of excitatory neurons to encode and transform
signals. Homogeneous excitatory networks can be leveraged for
reliable information encoding via localized states of persistent
activity, whereas heterogeneous networks provide robust and
flexible information processing capacities in regimes of oscillatory

dynamics. The control of heterogeneity thus allows the brain to
optimize the local neural circuits for particular tasks.

Materials and Methods
A. Model Equations and Parameters. We studied networks of Izhikevich
neurons of the form Eqs. 1–4. The state of the network is defined by the
membrane potentials vi of all neurons {i}, a global recovery variable u, and
a global post-synaptic activation term s. A neuron generates a spike when
its membrane potential reaches a cutoff value vp. At the time point t when
vi(t) = vp, a spike is counted and the membrane potential vi is reset to
a potential v0. Hence, Eq. 4 represents the average firing activity across all
neurons in the network; here � is the Dirac delta function and tkj is the time
point when the k-th spike of the j-th neuron was generated. Since the average
firing rate r drives the synaptic input s that each neuron in the population
receives, Eqs. 1–4 represent an all-to-all coupled system. Eq. 3 defines the
synaptic input as a low-pass filtering of all spikes arriving at a neuron; the
exponential kernel of this filter reflects the slow synaptic integration of the input
across the dendritic tree of each neuron (41). The average firing rate r also
affects u, a global recovery variable that accounts for spike frequency adaptation
and subthreshold oscillations of membrane potentials. Whereas the original IK
model used neuron-specific recovery variables ui (39), we approximate their
effects via a global recovery variable u shared across neurons. As we show in ref.
90, this approximation captures quite well the macroscopic dynamics of networks
with neuron-specific recovery variablesui. This approximation, together with the
adoption of a Lorentzian assumption for the probability distribution of the
spike thresholds v� , allows for an analytic derivation of the mean-field Eqs.
6–9, which self-consistently capture the macroscopic dynamics of the spiking
neural network described by Eqs. 1–4. We provide a detailed derivation of the
mean-field equations in SI Appendix.

The set Eqs.1–4models a single population of all-to-all coupled neurons that
interact uniformly via a single synapse type of strength J with synaptic filtering
time constant �s. To generalize this model to multiple populations that interact
via distinct synapse types, it suffices to add additional synaptic currents of the
form Im = gmsmi (Em − vi) to the right-hand side of Eq. 1; the superscript m
identifies a particular synapse type with maximum conductance gm, reversal
potential Em and synaptic current smi . Each synaptic current smi may be governed
by a distinct synaptic low-pass filtering:

�ms ṡ
m
i = −smi + �ms

N∑
j=1

Jmij
∑
k\tkj ≤t

�(t − tkj ), [10]

where Jmij is a coupling strength specific to the synapse from neuron j to neuron
i via synapse type m. We used this definition of the synaptic input to study
networks of interacting regular-spiking (excitatory) and fast-spiking (inhibitory)
neurons with sparse coupling. Furthermore, all SNN simulations reported in this
study are based on networks with sparse, random coupling, i.e., where each
synapse in the network has a strength Jij as in Eq. 10. This choice allowed us to
compare our mean-field predictions, obtained under the assumption of all-to-all
coupling, to the dynamics of more realistic SNNs.

The full equations for multi-population excitatory-inhibitory Izhikevich
neuron networks can be found in our previous work (90, 93). The default
parameters used for regular-spiking, fast-spiking, and low-threshold-spiking
neurons are provided in Tables 1–3, respectively. Furthermore, Table 4 provides
the coupling parameters for the two-population model consisting of coupled
regular-spiking and fast-spiking neurons. While we have found similar results
for a number of different coupling parameter sets (see SI Appendix, Fig. S13 for
results obtained for two additional sets of coupling parameters), we chose the
particular set of coupling parameters in Table 4 to reflect i) the larger number of
excitatory vs. inhibitory neurons in the cortex (5) and ii) the balanced strength
of excitatory and inhibitory synaptic inputs to cortical neurons (49, 94).

B. Numerical Simulation and Analysis of the Dynamics of Spiking Neural
Networks. Network dynamics were obtained via numerical solutions to the
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Table 1. Regular-spiking neuron parameters
Parameter Value Parameter Value

C 100 pF k 0.7 nS/mV
vr −60 mV v̄� −40 mV
g 1 nS E 0 mV
�u 33.33 ms �s 6.0 ms
� 10 pA b −2.0 nS
J 15 Δv 0.5 mV

initial value problem. For all model dynamics (spiking neural network dynamics
as well as mean-field model dynamics), we used the simple Euler method with
an integration step-size of 0.01 ms to solve the initial value problem. To obtain
the mean-field model and spiking neural network dynamics, we used the open-
source softwares PyRates 1.0.4 (95) and RectiPy 0.12.0 (96), respectively. Scripts
to reproduce our results are available at Zenodo (97).

Spiking neural network dynamics were computed for networks of N= 2,000
neurons, if not mentioned otherwise. The spike threshold of each neuron was
randomly sampled from a truncated Lorentzian. The distribution was truncated
such that a) the minimum spike threshold was larger than the resting membrane
potential and b) the distribution was symmetric (see ref. 90 for details on the
truncation and the sampling of the truncated distribution). For sparse synaptic
coupling, we used a coupling probability ofp = 20%. Each neuron receivedpN
synaptic inputs through couplings of equal strength, from randomly sampled
source neurons.

In ring networks, we randomly sampled connections from a spatial connecti-
vity distribution with probability density function �(x, y) = c|x− y|−d , where
y and x are the location indices of the source and target neurons, respectively,
and c is a normalization constant to ensure that

∫
�(x, y)dy = 1 for all x. The

parameter d determines how quickly the connectivity distribution falls of with
the distance between neurons. We used d = 1.5 and d = 0.75 to obtain the
results in Figs. 3 and 4, respectively. To obtain the results in Fig. 2, we used a
purely random network (no ring structure); this corresponds to d = 0.

To ensure that our results are independent of the random sampling of
network connections, we repeated the network simulations for Figs. 3 and 4 10
times for each set of network parameters, using a different randomly sampled
set of coupling strengths each time. We show results averaged across the ten
repetitions as well as individual trials in Figs. 3 and 4.

To obtain the bifurcation diagrams depicted in Figs. 1 and 2, we employed
numerical parameter continuation and bifurcation analysis using the open-
source software PyCoBi (98), which is available at Zenodo (99). This software is
based on the well-known Fortran software Auto-07p (100), which implements
state-of-the-art methods to continue known solutions of differential equation
systems and automatically detect special solution types in up to three parameters
(101, 102). Additionally, we located bifurcation points in the SNN dynamics for
Fig. 1 based on numerical simulations with a slow ramp in the input current
I(t); this procedure ensured that the network was slowly pushed toward and
over the bifurcation points of interest. To detect fold bifurcations, we detected
time points T where the average firing rate in the population crossed the
threshold rT = 10 Hz, chosen to mark the transition from a quiescent to
a persistent spiking regime (see SI Appendix, Fig. S10 for an example). To
detect Andronov–Hopf bifurcations, we identified oscillatory amplitudes in the
fluctuations of the average firing rate that spanned 10 Hz from through to peak

Table 2. Fast-spiking neuron parameters
Parameter Value Parameter Value

C 20 pF k 1.0 nS/mV
vr −55 mV v̄� −40 mV
g 1 nS E −65 mV
�u 5.0 ms �s 8.0 ms
� 0 pA b 0.025 nS
J 5 Δv 1 mV

Table 3. Low-threshold-spiking neuron parameters
Parameter Value Parameter Value

C 100 pF k 1.0 nS/mV
vr −56 mV v̄� −42 mV
g 1 nS E −65 mV
�u 33.33 ms �s 8.0 ms
� 20 pA b 8.0 nS
J 5 Δv 1 mV

(see SI Appendix, Figs. S11 and S12 for examples). If at least 5 subsequent
cycles of these oscillatory patterns were detected, that value of the input
current I was marked as corresponding to an oscillatory regime. The start
and end points of the range of values of I corresponding to the oscillatory
regime were identified as Hopf bifurcation points. A similar procedure was
used in ref. 90.

C. Analysis of Persistent Activity in Spiking Neural Networks. Our aim in
Fig. 3 was to identify regions of a ring network that expressed bump activity, i.e., a
state of persistent activity after we applied extrinsic stimulation to a small section
of the network. To look for persistence, we recorded the spiking activity of each
neuron in the network for a time interval of duration�= 3,000 ms (Fig. 3BandC)
at a sampling rate of 10 samples per ms (10 KHz). We applied low-pass filtering
to the spike train by convolving the time series with a Gaussian kernel of width
� = 200 samples (20 ms), to obtain a slowly varying firing rate that characterized
the activity of individual neurons. Finally, we calculated the average firing rate
of each neuron during the final 200 ms of the recording period and normalized
the firing rates by the maximum firing rate observed during these final 200 ms
of the recording period. We plotted the normalized firing rates for all neurons
to identify the network regions that displayed persistent activity. Fig. 3 D and
E show the persistent activity averaged over ten different network realizations;
SI Appendix, Fig. S6 shows the persistent activity of different example networks.
We then quantified the spread of persistent activity by computing the root mean
squared error between the distribution of persistent activity across the network
and the extrinsic input distribution, where the latter is simply a step function that
is 1 at each location in the network where extrinsic stimulation was applied and
0 elsewhere. We also calculated the average activity outside the initial bump,
defined as the average of the firing activity across all locations in the network
where no extrinsic input was applied.

D. Analysis of Function Generation Capabilities in Spiking Neural Net-
works. Our aim in Fig. 4 was to quantify the capability of the recurrent neural
network to generate arbitrary time-dependent functions after a short pulse was
delivered as an extrinsic input. We used 50 distinct onset times for the extrinsic
stimulation. For networks in the oscillatory regime, the onset times were equally
spaced across a single cycle of the intrinsic oscillation (Irs = 55 pA). For networks
in an asynchronous regime, the onset times were equally spaced across a time
period of 250 ms. We then simulated the network dynamics for an initial period
of≈2,000 ms (we varied this duration slightly in oscillating networks to account
for differences in the intrinsic oscillation frequency) and used the final state
of the network as an initial condition (in the oscillatory regime, this final state
corresponded to a trough within the intrinsic oscillatory cycle). For each onset
time of the extrinsic pulse input, we simulated the network dynamics until the
input onset plus an additional period of≈ 250 ms.

Next, we quantified the function generation capacities of the network based
on its dynamics after the extrinsic stimulation. A data matrix X of dimension
N× T describes the collected dynamics the N neurons in the network during T

Table 4. Coupling strengths for the two-population
model
Parameter Value Parameter Value

Jr,r 16 Jr,f 16
Jf,f 4 Jf,r 4
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time points. We asked about the capacity of the network to generate arbitrary
functions y(t), 0 ≤ t ≤ T , via a linear readout:

y ≈ wX, [11]

where w is an N-dimensional vector of readout weights. This scenario is known
as reservoir computing (55): a recurrent neural network is viewed as a dynamical
systemthatcanleverageitshigh-dimensionalstatespacetoperformmeaningful,
linearly separable transformations on its inputs. The set of readout weights can
be obtained analytically:

w = yXT (XXT + 
 I)−1, [12]

where I is the N× N identity matrix and 
 corresponds to the L2 regularization
strength used when solving Eq. 11 via ridge regression. We obtained the
readout weights for two distinct target signals y1(t) and y2(t) via Eq. 12. The
first target signal was chosen as a combination of two sine functions y1(t) =
sin(2�!1t) sin(2�!2t), with frequencies !1 = 5 Hz and !2 = 20 Hz. The
second target signal was chosen as the convolution of a Dirac delta function
centered at t∗ = 150 ms with a Gaussian kernel of width � = 15 ms. The
readout weights for these two target functions were calculated based on the
network responses to 40 different stimulation onsets. Once the readout weights
were obtained, we computed the network responses to 10 additional, randomly
chosen stimulation onsets to obtain the function generation performance on
test data, as follows. For each test stimulation onset, we collected the network
response Xtest and used the trained readout weightsw to generate the response
from the network dynamics via

ŷ = wXtest. [13]

We then calculated the mean-squared error between the actual response ŷ
and the target response y, and averaged this error over all 10 test stimulation
onsets to quantify the capacity of the network to generate a specific target
function. We provide examples for the function generation performance of
homogeneous and heterogeneous networks on y1(t) and y2(t) as well as
visualizations of the corresponding network dynamics in SI Appendix, Figs.
S7–S9.

As an additional measure of function generating capacities, we estimated
the dimensionality d of the network dynamics using the participation ratio
(103, 104),

d = (
∑
i

�i)
2/

∑
i

�2
i , [14]

where �i are the eigenvalues of the covariance matrix XXT . We found
this to be a good aggregate measure that explains the differences in the
function generation capacities of heterogeneous vs. homogeneous networks
(Fig.4).

Finally, we calculated the variance q of the network’s function generation
capacity across different stimulation onsets. We used the network response
kernel K, a T × T matrix which yields information about the general function
generation capacities of a network, independent of a particular target function
(54, 105). The network response varianceQquantifies the trial-by-trial difference
of the kernel responseK:Qij = diff(Kij), where diff yields the average difference
of K across training trials. We then compute q as:

q =
∑
i

∑
j

Q2
ij , [15]

A larger q indicates a stronger dependence of the network response to
an extrinsic stimulation on the intrinsic state of the network at the time of
stimulation. We provide a detailed definition of the network response kernel K
and the network response variance Q in SI Appendix.
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